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PERIODIC MOTIONS OF GYROSCOPIC SYSTEMS* 

A.A. VORONIN and V.V. SAZONOV 

A generalized conservative gyrOSCOPiC system is considered. It is shown 

that there is a two-parameter family of periodic solutions of the complete 
equations of motion of the system, close to the similar family of solutions 

of the precession equations. 

1. Consider a conservative mechanical system which contains 1 gyroscopes. We assume 

that the system position is defined by 2m + 1 generalized coordinates x1,...,+,,, cpl,...,‘pl, 

where ‘pr, . . ..‘p. are the angles of proper rotation of the gyroscopes, while I = (5*. . ., Iz,)T 

are parameters which characterize the directions of the gyroscope axes and the positions of 

the suspensions. We also assume that the system is described by the Lagrange function /l/ 

Here, the dot denotes differentiation with respect to time t, Ck are constants, and the 

symmetric matrix A (z) = (Uij (Z))i,j=1'" is positive definite. The angles rp, are cyclical coor- 

dinates, and the corresponding first integrals are 

Using Rouse's method and introducing the notation 

the equations of motion of the system can be written as 

These equations have the generalized energy integral 

*Prikl.Matem.Mekhan.,52,5,719-729,1988 
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We shall assume that the h in Eqs. (1.1) is a large positive parameter, and that the func- 
tions n(.r), aij(r), gii(x) (i,j = 1, . . ..2m) are independent of h. We shall also assume that the 
matrix G(z) = (gij (x))~,~,~~"' is not degenerate. The equations 

2”? 

h 
c 

g+~+~=O (i=1, . . ..2m) 
i=l i 

whichhave the first integral n(.z)=const, are called precessional /l/. We shall assume that 
these equations have a two-parameter family of periodic solutions, and we shall examine 
whether the complete Eqs.(l.l) have a similar family. 

To give an exact statement of the problem, we change in (1.1) and (1.3) to the new 
independent variable + = K-'t. To simplify the writing we shall use vector notation. We then 
obtain the equations 

Gd+($)‘=-h-2(&$- -g T, ) R=+(x’)TA(x)x’ (1.4) 

(1.5) 

The prime here denotes differentiation with respect to z, and the derivatives of the 
scalar functions with respect to vector arguments are regarded as row vectors, e.g., an/ax = 
(amax,, . . ., aII/a&,,). We assume that .4 (x), G(z), and n (x) are fairly smooth functions, i.e., 
have all the derivatives required for our future working. 

System (1.5) is obtained from (1.4) with h = co, so that we shall call the system 
degenerate. We shall assume the following with regard to (1.5): 

lo. The system admits of the two-parameter family of periodic solutions 

x = 'p (r + 70, c) (1.6) 

with period Z'= T(c), where cE(clO,czo), r,,E (-00, +m) are parameters. 

2O. With c E lc,, c,l C (cry, c,"), the system of equations in variations for the solution 
(1.6) has a non-trivial T-periodic solution 'p' (r + r,,,c) which is unique, apart from a con- 
stant factor. 

3O. With c E Ic,, c,l we have an (cp (z + zO, c))i& f 0. 
Without loss of generality, we can put r0 = 0 in (1.6). We shall seek the T-periodic 

solutions .r(z,c, h) of system (1.4) which are defined for values (c, h) of an unbounded set 
Ih c k,, c,l x 10, +‘=) and satisfy with admissible h+ 00 the conditions r (r, c, h) - cp (r, c), 
5' (T, c, h) -+ cp' (7, c). 

2. We first make some auxiliary transformations. Since the matrix A (x)is symmetric and 
positive definite, while G(z) is skew-symmetric, the corresponding bilinear forms can be 
simultaneously reduced to canonical form /2/. More precisely, there is a non-degenerate 
matrix F(x) such that 

FT (4Ab)F(xJ = Em, 
FT (x)G(x)F(x) = --diag (yl (x)1, . . ., y,,, (x)J) E - r (5) 

I= 

(2.1) 

Here and below, Ek is the k-th order unit matrix. 
The conditions l"-30 of Sect.1 are supplemented by conditions 4O. 
For all admissible x the matrix F(z) and the scalars yj (x) (j = 1, . . ., mt), are fairly 

smooth functions. 

5O. For cE Icl,ct~, TV (-m, +w), we have 

0 < yra Im (r, 41 < yze Iv, (t, 41 < . . . < %n”h (79 41 

To reduce system (1.4) to normal form, we introduce the new variable peR8”‘, putting 

z' = F (s)p + a (s), a (z) = ---G-I cd (an (d/a4T ..(2.2) 

We substitute our expression for x' into (1.4) and multiply the result by Fr (5). Using 
(2.1), we obtain the equation 

p' = Pr (Z)P + f (I, P) (2.3) 

where f(x,p) is a second degree polynomial in p with coefficients which depend on 4 (X)7 F(s), 

Q, (5) and their first derivatives. Eqs.(2.2) and (2.3) form a closed system, equivalent to 
system (1.4). 



In system (2.2), (2.3) we make the change variable z = v(T.c)-~~ and we isolate some 
terms explicitly inthe resulting equations. F7e thus arrive at the T-periodic system 

in which we have, for the functions @,,f,, and g,, uniformly with respect to c E [c,, CJ, 
TE(--~, +CO) , the estimates 

a,, it. 5, p, c) y 0 ill E II2 + II E, II IIP II) 

fr (r. j, p, c) 0 ill E II t II P II’), fil i-c? t> I’> c) : 0 (II E ll”l~PIl) 

Here, II . II is the Euclidean norm. 

In the new variables, we can write the first integral (1.2) as 

n (cp + E) -t KZIT, (r. F, p, c) - const 

(n, (T -1 T. :. Il. C) =~ rIl CT, E, ?, C)) 

(2.5) 

Since (2.5) is the first integral of system (2.4), its total derivative with respect to 

't is, by virtue of this system, identically zero. Putting E = p = 0 in this identity and 

its partial derivative with respect to p, and separating in the resulting relations the 

principal terms as h-t 03, we find the equations required below: 

Our subsequent transformations are used to simplify the linear terms in system (2.4). 

The substitution E -= IL + h?B (t, c)T,,-' ir. c)i' reduces this system to 

u' = A (r, C)U + h-‘@,, (T, C) - ‘#‘, (x) 

FJ’ :mx {h2 [r, (T, C) + rl (T, U, C)l $ c (T, C))[J + f. (T, C! + 

1% ix) f k’gr ix) 

@, (T, C) = -n iT, C)r,-’ (T, C)f,, (T, C), x = (T, U, fl, C, h) 

where, for the functions D,, jI, and gz as u,p,la-'-+ 0 uniformly with respect to 

and TEi---03,+-00), we have the estimates 

a'z ix) = 0 K2 ill u II + II P II) + II u II II P II + II u II21 

f2 (Jo = 0 ill u II + h-” II P II + II P II’), & ix1 = 0 ill u l1211PI,~ 

Consider the linear inhomogeneous system 

u' = A (r, c)u + QD, (z, c) 

(2.7) 

c E lc,, $1 

(2.8) 
We know /3/ that this system has a T-periodic solution if and only if, given any T- 

periodic solution II,(Z) of the adjoint system 

$1 -/-Q/l (r, c) = 0, $T E BZrn (2.9) 

we have the equation 

j,,T),,(T, r)dt=O 

Since, by condition 2O of Sect.1, the system 

U' = A (t, c)u (2.10) 

has a unique non-trivial T-periodic solution u = (p’ (z, c), then system (2.9) likewise has a 
unique non-trivial 'T-periodic solution /3/. In accordance with /4/ and condition 3O, this 



solution can be written as 

I$ = arI (r#)/&r E $0 (r, c) 

Using (2.6) and the definition of @,(r,c), we find that 

Consequently, 
defined apart from 
of the condition 
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(2.11) 

a T-periodic solution of system (2.8) exists. Call it uO (TV c). It is 
a term proportional to w'(z,c). To fix &J (r, c) 8 we require satisfaction 

j[m'(r, c)]~u~(~, c) dT=‘J 
0 

A method of constructing the solution ull (t, 4 is given below. We merely mention here 
that it is a smooth function of c. 

In system (2.7) we make the replacement 

u = y -f hPU, (r, c) 

We obtain 

Y' = A (~7 4y + @a 0') 

p' = IVr, (T, c) + c, (t, c)lp + 
c, (t, c) = c (z, 4 + rl (7, 47 ir, c), c), 

As y,p, h-r- 0 uniformly with respect to c 6z Ic,, 
f 3 5 and g, satisfy the estimates 

(2.12) 

(2.13) 

f3 (Y) + &r, iv 

y = (T, Y, P, c, h) 

c,l I ‘cE(-co, +co), the functions m3, 

aq (7, c, h) = 0 (h-4). fsO (z, c, h) = 0 (I), f30’ (T, c, h)=O(l) 

% (Y) - @D,” (z, c, h) = 0 w (II Y II + II P II) + II Y II2 + 

(2.14) 

fs W) - f3O iz, c, h) = 
g3 (Y) = 0 (II P II II Y II) 

II Y II II P III 
0 ill Y II + WI P II + II P II”) 

In these relations and below, for 

c, h) = g (7, 0, 0, c, 4. 
The transformation (2.12) reduces 

The next transformation simplifies the 

of PI we introduce the variable 

any function g(Z, ., ., c,h) we use the notation g" (? 

the right-hand side of the first equationofthe system. 
term Cl (T, c)p in the second of Eqs.(2.13). Instead 

where Q (~7 c) is a T-periodic matrix. The explicit form of Q(T,c) is given below. AS a 
result, system (2.13) transforms to 

y'=A(r,c)y+@,,(U) (2.15) 

z’ = Wr,, (.t, c) + D (t, .c)lz + fP (U) + h*g, (U) 
D it, c) = C, + Qr, - r,Q, u = (~7 Y, z, c, h) 

The matrices Q and D are obtained as follows. We write matrices C,, Q, and D in the 

2 X 2 block form: C, = (Ci,)i,,,;n, D = (Dij)i,j=l”‘, Q = (Qij)i,j,lm. we can then write the expressions 
for Q as the system 

Dij = Cij + yj”QijJ - yi’JQij, yi” = vi (up) (i, j = 1, . . ., m) 

An indirect check in the light of condition 5O of Sect.2 shows that we can take 

Oil = (v;’ - pi”)-’ (YtJCij + y:CijJ), Djj = 0 (i #i) 

Qii = (4yi”)-’ (CiiJ - JCii), Dii = ‘i, (Cii - JC,J) = 

ILiE -t viJ 

pi = pi (7, c) = ‘i, tr cii, vi = vi (t, c) = --‘/, tr JCii 
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The matrices q (T, c) and D (T, c) thus constructed are T-periodic with respect to T. 

AS y, z, h-'---f 0 uniformly with respect to r :: ICI, %I, rE (-co, I~co), the functions (I),. !& 
and g& in (2.15) satisfy estimates similar to (2.14). 

we introduce the unbounded set 

Theorem. Given any E65 (O,l), positive numbers H, A,, and A, exist such that, for 

(C, 12) E 1 (E), h > H , system (2.15) has a unique T(c)-periodic solution y, ir, C, h), z* it, C> IL! 
which satisfies the conditions 

II Y* CT, c> k)ll d Ah-9 II z* (~3 ct k)ll < A&” 

(-x<T<+ c), ~,'i'(r.c)]'y,(~,c,k)dr=O 
; 

(?.lC) 

Notes. lo. The last condition of (2.16) is used to fix a time shift which is permissible 

in the solutions of autonomous systems. 

2O. The condition (c,h)EI(c) eliminates from the analysis of periodic solutionsof system 

(2.15) resonances between the slow oscillations (with frequency 2nlT) and the fast oscillations 

(with frequencies --k’) . Such resonances can arise at values of c and h given by the equations 

ai (c) = 0, sin [h*bi (c) + di (c)] = 0, where i is any of the numbers 1,. .,m. To each root c* of the 

first equation there corresponds a set of resonance values h: h,= v(nn- di(c,))/bi(c,). Here, n 

is any integer for whichthe expression under the root is positive. Large h and InJ are of 

interest. In this case, 

It can be seen from this relation that we only need to know the functions & (C) when 

calculating the second term in the asymptotic form of the resonance values h; and this term 

approaches zero as h-m. On the other hand, the determination of di(c) is the most difficult 

part of the working required for our theorem. For, in order to find bi (c) we have to know 

7'i" (r, c)* and to find Oi Cc) we have to know the diagonal elements of the matrix C (T,c) (which 

are the same as the diagonal elements of C, (r, c)), while to find di(c) we need to find the 

two collateral diagonals of C,(r,c), the evaluation of which demands that we find the periodic 

solution of Eq.(2.8). By what has been said, when applying our theorem to a specificmechanical 

system, it may not be possible to calculate the di (~1 - 
3O. Corresponding to the periodic solution of system (2.15) in the theorem we have the 

T-periodic solution z" (T. C, h), p0 (T, C, h) of system (2.2), (2.3), which satisfies the conditions 

Iiere, A," and A,’ are positive numbers. The statement of the theorem about periodic 

solutions in terms of system (2.2), (2.3), or of system (1.4), would contain many at first 

sight unjustified conditions and would be even more unwieldy, so that the statement in terms 

of the transformed system (2.15). 
40. It has been assumed that system (1.5) has a family of oscillatory periodic solutions 

i.e. , that cp (r + T (c), C) = 'p (z, C) in (1.6). The theorem also holds in the ease of a family of 
rotatory periodic solutions. In fact, when non-zero number T, and a constant vector e E R=m 
with integral components exist such that, in (1.4)-(1.6), A (z + Toe) = A P), G (z + Toe) = G (z), II (z $ 

T,e) = II (z), ‘P (T + T (c). c) = ‘p (~9 c) -I- Toe for all I, c, z. 

3. The proof of the theorem is based on the methods used in /4, 5/, and is very similar 

to the proofs of /6, 7/. We first give some auxiliary relations. We put 
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Y,(U)==f~(wt-h2g&(~) (3.1) 

It was mentioned above that, for the functions Qfg,jkr and g4 in system (2.15), as y, z, 
X1-F 0 uniformly with respect to c c [c,, Cal, TG(-~,+w), estimates hold which are 
obtained from (2.14) by the replacements 3-t 4, p -+ 2. In view of this, there are positive 
numbers K, 6, H, such that, for all rI E, h,y,z,y,,a,(Y,,z, fBam), whichsatisfythe conditions 

z -- (- 00, t co), c E Ic,, 4, h > HI and max fll Y IL II 2 Ill II y, II, II s1 II) < 6, we have 

II @'r' (z, c, h) II < Kh-*, II Y&O (z, c, h) II G K> (3.2) 

II YiD' (% c, h)II < Ir: 

II @r (U) - @'lo ('6, CT h) II < K Ih-' (II Y II + II 2 II ) + II Y Ii’ + (3.3) 

II Y II II 2 II1 
II YyI (V) - tfrk’ (~3 c, hf II < fr’ (ii y II + h-’ II 2 II + I/ 2 11% + 

h* II Y II Ii 2 II) 

Qz = (=G yz, 21, c, % dg = II Y - Y, II 

d: = 11 2 - 21 11, Fy = II y II + // y, 11, rz = /I Z 11 + II 21 iI 

43.4) 

As a result of the transformations described in Sect.2, the first integral of (2.5) 
transforms into the first integral of system (2.15)‘ which can be written as 

V(U)~$~(z,c)y + V,(U) = const (3.5) 

The function h/,,(r,c) is given by (2.11); as y,~,h-~+O uniformly with respect to 

c E Ic,, c,l, ZE(---,i-), we have the estimate aV,(Uj/ay =O(llyJl + hp2). It can be assumed 
without loss of generality that, for c E lc,, 4, T E (- CO, + cm), h > H, and max (II Y II, II 211) < 

6, we have 

II dvx (Way I/ < K’ 01 Y II + h-Y (3.6) 

Consider the boundary value problem 

y (0) = y (T) 

for the linear inhomogeneous system (see (2.8)) 

y' = A (r, c) y + @ (4 

(3.7) 

(3.3) 
corresponding to the first equation of (2.15). 

Since the corresponding homogeneous system (2.10) has a non-trivial T-periodic solution 

u = cp' (r, c), it is best to study problem (3.7), (3.8) with the aid of the generalized Green's 
function /4/. Denote it by G,(z,s,c) (O< z,s< T, c1 SC< c&. It is uniquely defined by the 
same boundary conditions and the jump condition at r=s as the ordinary Green's function, 
and by the equations 

G’G, (T, s, c)/c?z = A (r, c) GO (z, s, c) - @eT (.c, c) $0 (s, c) 

i I$ (2, c)]=G, (z, s, c) dz = 0, n&h, C)%=(T, c)dr)-’ 
0 II 

The expression 

.(3.9) 

satisfies the boundary conditions (3.7) and the relations 

Y' = A (~9 c) Y + cf, @) - @o= (7, c) 

w=n &fT, C)@(?)&, j: i I$@. C)]ry(Z)d7=0 
0 0 

It is the solution of the boundary value problem (3.71, (3.8) if and only if w = 0. 

Using (3.91, we can write explicitly the function &,(z, c), used in the change of variables 
(2.12). 

We define the norm ofthevector function f b)7 continuous in the interval O,(Z_=T, 
as the number 



For the norm of (3.9) with any C c- Ic,, c,l , we have the bound 

v (y) -( N,v (Q) (3.10) 

where N, is a positive constant. 

we now consider the boundary value problem 

z (0) : 7, (T) (3.11) 

for the linear system 

z' 2-m [PI?, (7, c) + D (t, c)l .z + Yr (1) (3.12) 

corresponding to the second equation of (2.15). 

If Ai(c,h)>O (i = 1, . . ..m). this problem has a unique solution, which, with the aid of 

the corresponding Green's function G(r,s,c,h), can be written as 

z (T) = i G ( z, s, c, h) Y (s) ds (3.13) 
” 

In view of the special form of matrices r0 and D, Eq.(3.12) is integrable in quadratures, 

and an explicit expression can be found for G (r, s, c, h). We have the relations 

G (T, s, c. h) - diag (G, (T, s, c, h), . ., G, (t, s, c, h)) 

Gi (T, 3, c, h) GiO (t, s, c, h)i’Ai (c, h) (i = 1, ., m) 

where the elements of the (Z x 2) matrices G,@(T,s, c,h) are bounded piecewise smooth functions. 

If Y(z) in (3.12) has a continuous derivative and satisfies the boundary conditions (3.11), 

we find, on making the change of variable z = U- h-"I‘,~l(t,c)Y(r) in problem (3.11), (3.12), 

and applying (3.13) to the transformed problem, that 

z (1) = - PI’,’ (T, c) ‘I’ (1) -~ h-” \ G (T, s, c, h) [r;l (s, c) Y’ (s) - 
; 

(r;’ (s, r))’ ‘r (s) - D (S, c) r;l (s, c) ‘Y (S)] ds 

By the last relation and (3.13)) there exist positive numbers N and H, such that, for 

(c, h) E I (E), h > H2, we have for the norm of the solution of problem (3.11), (3.12): 

2’ (2) 6; E-INV (Y) (3.14) 

v (2) .s; hP:V Iv (Y) + s-1 (v (up) + Y (Y'))l (3.15) 

It is assumed below that (c,h)E I(e),h 1. mas (H,, H,), and inequalities (3.14), (3.15) are 

used without extra restrictions on the choice of h. 
The determination of the T-periodic solutions of system (2.15) is equivalent to solving 

boundary value problem (3.7), (3.11) for this system. ToS solve the latter problem, we con- 

siderthe system of integral equations 

(3.16) 

2 (T) = i G (~7 4 Yh (s, Y (4, z (4) ds = L, (y, z) 
0 

Here and below, to reduce the writing we do not usually indicate c and h among the 

arguments of the functions considered. We shall solve (3.16) by successive approximations. 
In the interval 0 <r ,< T, we construct the sequences of functions y, it), zx (r) (k = 0’ I,...), 
by putting 

Y, (T) = % (r) = 0, ykt, = L, (yk, Zk) 

%+I = L, (!,k, zk) (li = 0, 1, . .) 

(3.17) 

Let us show that, given sufficiently large h, these sequences converge to the solution 
of system (3.16) _ 

It can be shown that, for sufficiently large h, 

Y (Yk) I’ A,P < 6, Y (zk) -< A2hP -(- 6 (k = 0, 1, .) (3.18) 
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where Al and A, are positive numbers. 

Since 

(3.19) 

we can write (3.17) with k>l; as 

T 

we assume that v (yk) < 6, v (Q) < 6 (k = 0, 1, .). Then, by the inequalities (3.3), (3.10) and 

(3.14), we have 

Y (Y~+~) <v (~1) + KJ'VOP-* (v (Y,) -t y (Q) + v2(yk) tv (~~1 v (Ql (3.20) 

v(zr+r)< ~(21) + ~-W'[v(y~)+ 6% (2,) + +(z,) + PV (Y,) v (zk.] 

Applying inequalities (3.10), (3.15) to Eqs. (3.19) and using the estimates (3.21, we 
obtain 

v (yJ <BIW, v (zl) <B,h-2, B, = KN,, B, = KN (1 + S-l) 

We choose A, and A, from the conditions A,>B,. A, > B, + KNJA,, and take 

KN (1 + ‘4,) (.41+ AZ) KJ&(l +A,+& 
a(‘%-&) ’ A, - B, - KN,,A* 

Then, if inequalities (3.18) hold for some k, we have by (3.20): 

Since (3.18) hold for k=l, it now follows that they hold for all k. 
Let us prove the convergence of iterations (3.17). Consider the sequences ak = v (Yk - 

yk-I), flk = ,' (zk - Zk-I), qk = v (yk) + v (Yk-I)? rk = %' (zk) + v (211-l) (k = 1, 2, . .). By (3.4), (3.10), 
and (3.14), we have 

ak+l < KNO (qh + rk + h-') (ak + pk) 

fik+l < E-'KN lak (1 + h+k) + pk (hm2 + h2qk + rk)] 

Assuming that h,;H, and finding bounds for qk and rk in the last relations by means of 
(3.18), we obtain 

ak+I .< h_kM (ak + pk)l pk+l - 'hf (ak + h-*fb) (3.21) 

M = K (1 + 2A, + 2A,) max (N,, E-'N) 

Consider the sequence pk = ak + h-lb, (k = 1,2,. . .). By inequalities (3.21), pk+l< &f (h-l + 

h-') Pk. We introduce the set 

I, = {(c, h): (c, h)E I (E), h > H,), Hb = max (Ha, 2M + 1) 

with (~7 h) E I,, we have pk+l<l/.#k (k = 1,2,...). Using this bound, we can show that the 

sequences yk(x) and zk(t) are uniformly convergent in the set [O, TI x I, to continuous 

functions Y, (r, CT h) and z* (r, c, h) which satisfy the inequalities 

v (YJ < A,hP < 6, v (2,) < A&’ -< 6 (3.22) 

Passing to the limit as k-+co in (3.17), we find that Y,,Z, is the solutionofsystem 

(3.161, these functions being continuously differentiable with respect to x. The uniqueness 
of the solution is proved by the standard method. 

The functions y, and z* satisfy the boundary conditions (3.7), (3.11), the second of 

Eqs.(2.15), and the equations 

Y* ’ = A (z) y, + @‘r (~7 Y,, zt) - %‘i’o= (t) (3.23) 
T T 
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Let us show that u'* 0. which means that y*,z* is the solution of boundary value 
problem (2.15), (3.7), (3.11). We use the device of /4/. We consider the function (see (3.5)) 
V,(T) = V(T,~,(T),Z, (7)). It satisfies the relations 

Since V (T, y, z) is the first integral of system (2.15) , the expression in the braces in 

(3.24) is identically zero. By (3.5)) 

where, by (3.6) and (3.22), with (c,h)EI, t 

Y lav, (T. y, (T), z* (T))/@/l d K (1 + A,) hm2 

Consequently, there exists H. ‘Hk such that, with (c,h)~= I (E) and h‘-- H, the last 

integral in (3.24) is non-zero. For these values of c and h, we have UJ* = 0. On continuing 

the functions y,and z* T-periodically into the interval - 00 (r< + 00, we obtainthe required 

periodic solution of system (2.15). The theorem is proved. 

4. The passage to the limit as h-r co in Eqs.(l.l) implies an unbounded increase in 

the kinetic momenta of the gyroscopes when the system has finite inertial characteristics. Now 

consider the situation when the kinetic momenta of the gyroscopes and the generalized forces 

acting on the system remain finite, while the inertial characteristics tend to zero. For 

this, we make the replacement n(z)-+ hn(z) in (l.l), where h is a large parameter. As a 

result, we arrive at the equations which are obtained from (1.4) as T+ t,h2-+Iz. All our 

above constructions hold for the new equations. The only difference is a change in the time 

scale. However, this change of scale enables a new problem to be considered. 

In (1.1) we replace the generalized potential forces -~II/&r, by the generalized forces 

hQi (t, x) (i = 1, . . ., am), which are periodic in time with period T>O. Here, 2' is a number. 

Introducing the vector O(t,x) = (Qi (t,s), . ...&,,, (t,~))~, the new equations can be written as 

G(r):c’---Q(t, +=-h-1(-&~ - ;+)‘, lb-+(x’)TA(~)I* (4.1) 

We make the same assumptions about the matrices A (r)and G(z) as we made in Sects.1 and 

2. We also assume that the degenerate system 

G (x) 5’ = Q (t, z) 

has a T-periodic solution z = Q(t) with multipliers different from 1, and that the functions 

Yi Cx) in (2.1) satisfy for all t the inequalities 0 < y12 (cp (t)) < Y22 ('p (t)) < . . -=z Ym2 ((P (Q). 
We can then prove the existence of a T-periodic solution r (t, h) of system (4.1), which is 

defined for values of h from an unbounded set I,, C lo, + ce) and which, as h --f M and h - I,,, 

satisfies the conditions m (t, h) - cp (0, r' (t, h) - cp' (Q. 
The proof is almost an exact repetition of the proof given in Sects.l-3. The difference 

(and simplification) is as follows. First, the parameter c does not occur in the new problem, 

so that the set I,, is constructed on the line h, and not in the (c,h) plane. Second, the 
boundary value problem (3.7), (3.8) is now always solvable. Hence G, in system (3.16) is the 

ordinary Green's function, and the fact that the solution of this system is the solution of 
the boundary value problem (2.15), (3.7), (3.11) is trivial. 

1. 

2. 
3. 
4. 

5. 

6. 
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ALGEBRAIC OPERATIONS COMPATIBLE WITH THE DYNAMICS 
OF A NON-LINEAR DISCRETE CONTROL SYSTEM* 

A new approach is developed 
discrete control systems 

A.I. PANASYUK 

to the analysis and synthesis of non-linear 

z [li + i] = f (k, z [k], u[k]), z cs R”, u se R”’ (0.1) 

first proposed in /l/ for continuous non-linear systems. The underlying 
idea of the approach is to redefine the addition of state and control 
vectors and multiplication of vectors by scalars in such a way that the 
system becomes linear in the new linear space. As an application, a 
description is given of a class of non-linear control systems which are 
isomorphic to their linear approximations, and explicit formulae for this 
isomorphism are presented. This makes it possible to construct a control 
with prescribed dynamic characteristics for the linear approximation 
system, using the well-developed theory of the linear case; this control 
is then converted via the isomorphism into a control for the non-linear 
system, generating the required closed-loop dynamics of the system, by 
introducing linear feedback that compensates for the non-linearity of 
the open-loop system. 

1. The equation for the compatibility of the addition law in R-xRn with 
the system dynamics. We seek a canposition law smXk on the set R” 
mapping Ran + R": 

x"=.r @*Q?%p(k, z, z') 

Here k is a parameter and .r,x‘ the independent variables. 

Similarly, GUk: R2” -+ R” : 

uW = u &&kU’ 2 I$ (k, 5, x’, u, u’) 

Here k, x, x’ are parameters and U,U' the independent variables. 

Finally, Ok: R%+n) _+ Rmtn: 

(u, cc) ok (u’, x’) cf (u B,~u’, z c&~cz’), (u, x) E R”‘+” 

in the form of a 

(1.1) 

(1.2) 

(1.3) 
Whenever there is no need to specify k we omit the superscript k of ek- 
Let W denote the set of all pairs of functions u(k), x(k), a< k< b, satisfying (0.1). 

Infinite end-points a = - 00, b = 00 are admissible. For any (U Ikl, z Ikl), (u’ Ikl, x’ [kl) ‘_ W, 
we define 

(u [kl, .z lkl) iIj (u’ Ikl, z’ [kl) z (u Ikl &, u’ fkl, x [kl ‘:>& (1.4) 
I‘ Ikl\ 

*Prikl.Matem.Mekhan.,52,5,730-742,1988 


